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We consider the hybrid setup formed by a metallic dot, capacitively coupled to a superconducting island S
connected to a bulk superconductor by a Josephson junction. Charge fluctuations in S act as a dynamical gate
and overscreen the electronic repulsion in the metallic dot, producing an attractive interaction between two
additional electrons. As the offset charge of the metallic dot is increased, the dot charging curve shows
charge-skipping positive steps �+2�e�� followed by negative ones �−�e�� signaling the occurrence of a negative
differential capacitance. A necessary condition for such an effect is that the capacitance coupling the two
islands should be larger than the Josephson junction capacitance. A proposal for experimental detection is
given, and potential applications in nanoelectronics are outlined.
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I. INTRODUCTION

At low temperatures, the electronic transport through
pointlike metallic nanostructures �quantum dots� is domi-
nated by the electronic Coulomb repulsion between addi-
tional electrons. When a small-capacitance island is weakly
coupled to a normal metallic reservoir, the average number
of charges nN in the island increases one by one with the gate
voltage VgN, leading to conductance peaks.1 This Coulomb
blockade phenomenon has recently enabled an individual
control of charge or spin, for instance, in view of quantum
information protocols.2,3 We address here the possibility of
inverting the sign of the charging energy. Indeed, creating a
negative �instead of positive� effective charging energy in a
normal �nonsuperconducting� metallic island would induce
attractive correlations, triggering, for instance, pair tunneling
from or to a normal reservoir4 and a possible charge Kondo
effect,5 or giving rise to bunching correlations, which could
be observed in future shot noise experiments.6–8 Historically,
attractive interactions in the solid state are known as valence-
skipping states9 and negative-U centers.10 Another possible
mechanism for electronic attraction is mediated by optical
phonons, binding two electrons as a bipolaron in confined
geometries for strong electron-phonon coupling and medium
polarizability.11 Due to the low polarizability and small ef-
fective carrier mass, bipolarons are unlikely to form in a
clean GaAs /AlGaAs two-dimensional electron gas �2DEG�,
although they might do so in the presence of a few donor
impurities.12 More polarizable materials may allow bipolaron
formation in a metal and/or polar insulator multilayer.13 Mo-
lecular junctions are also promising for achieving a negative
charging energy.4,14

In the present work, we propose an alternative mechanism
by showing that the repulsive charging energy in a metallic
island �N� connected to a normal reservoir �Fig. 1� can be
turned into an attractive one when N is capacitively coupled
to a superconducting island �S�. The latter is connected to a

superconducting reservoir by a Josephson junction �JJ� and
operates in the Cooper pair box regime, e.g., it fluctuates
between two pair number states.15,16 Here, we assume that
electron tunneling between S and N is negligible; therefore,
no proximity effect occurs in the N island. We instead focus
on the charging properties of the N island as its gate voltage
is varied. The S island acts as an effective dynamical gate,
whose effects turn out to be nonlinear. As the main result of
this work, the Coulomb charging energy in N can be over-
screened by the neighboring pair fluctuations in S, and an
effective local attraction appears between electrons added
into N. As a corollary, certain charge states are “skipped” as
the N gate voltage is varied. The resulting charging curve
becomes nonmonotonous, displaying positive steps �+2�e��
followed by negative ones �−�e��. A related effect has been
proposed by Averin and Bruder for providing a controlled
coupling between two superconducting charge qubits.17 No-

FIG. 1. Schematic view of a normal island �N� coupled to a
Cooper pair box composed of a Josephson junction connecting su-
perconducting reservoir 2 and island S, and gate 10. For strong
capacitive coupling �controlled by 3 and 9�, S imposes an attractive
interaction among electrons tunneling between island N and its res-
ervoir �defined between 7 and 8�. Detection is made by sweeping
the gate voltage 4 and measuring the island voltages using quantum
point contacts for both N �5,6,7� and S �1,11,12�.
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tice that if N were coupled to both drain and source reser-
voirs, the proposed setup would be similar to a Cooper pair
box coupled to a single-electron transistor �SET�. The latter
has been studied in great detail as a readout device for a
superconducting �charge� qubit embodied in the S island.18

In this case, the capacitive coupling between N and S is
assumed to be small, in order to minimize the decoherence
due to backaction of the normal part of the device onto the
superconducting one, whereas in our proposal, the coupling
capacitance is larger than the one of the Josephson junction.

The outline of this paper is as follows. First, the two-
island system electrostatics is analyzed in a mean-field pic-
ture. It is then coupled to normal and superconducting reser-
voirs, treating the Josephson term, first as a small
perturbation, then by using an adiabatic approximation. We
conclude with a discussion of further issues and potential
applications.

II. ELECTROSTATIC ANALYSIS

Let us first start with an investigation of the two-island
electrostatics. The metallic island, referred to as island N, is
coupled to a normally conducting lead by a tunnel junction,
whose single-electron tunneling rate is �. The electrostatic
potential of N can be adjusted by applying a voltage VgN to a
gate, with capacitance CgN, which imposes an offset charge
of �N=CgNVgN /e in the island. The normal lead has a capaci-
tance CN�CgN and acts as a reservoir for electrons tunneling
to island N. Similarly, the superconducting island �S� is con-
nected to a superconducting lead by a Josephson junction
with energy EJ. The electrostatic potential of the S island is
also determined by a nearby gate with voltage VgS and ca-
pacitance CgS, which inflicts an offset charge �S=CgSVgS /e
with CgS�CJ, CJ being the capacitance of the Josephson
junction. Most importantly, the islands N and S are coupled
by a large capacitance C0. We assume that the superconduct-
ing gap in S is larger than the island’s charging energy, such
that only even charge number states nS occur in S. At low
temperatures, quasiparticle tunneling in S can be neglected.
Defining C�N=CN+C0+CgN as well as C�S=CJ+C0+CgS,
and introducing the convenient parameters b=

C�N

C�S
and r

=
C0

�C�NC�S
�1, the total charging energy of the NS system can

be written in a standard way as19

EC = ECN��nN − �N�2 + b�nS − �S�2 + 2r�b�nN − �N��nS − �S�� ,

�1�

with ECN= e2

2C�N�1−r2� . We similarly define ECS= e2

2C�S�1−r2� . Re-

call that �N ,�S are continuous control parameters. Notice that
the asymmetry parameter b and the coupling parameter r are
not independent, since both C�N and C�S are functions of C0.
In the limit where the coupling capacitance C0→0, the cou-
pling parameter r→0, too, but b can still take any value in
the interval �0,�� depending on the capacitance asymmetry
of the normal section of the system compared to the super-
conducting part. On the other hand, in the limit C0→�,
keeping all other capacitances fixed, both parameters
r ,b→1. Indeed, increasing r will cause b to approach one,

since the only way to increase r is to increase C0 with respect
to all the other capacitances. Specifically, the requirements
r��b for b�1 and r�

1
�b

for b	1 have to be fulfilled.
Overcoming these limits is unphysical since this would im-
ply negative capacitances.

Equation �1� determines the charge stability diagram of
the isolated NS system in the ��N ,�S� plane. A charge stabil-
ity diagram shows that the combination of charge states
�nN ,nS� minimizes the energy for the system for a certain
choice of gate voltages. The lines of degeneracy between two
charge states define the hexagons inside which the charge
states are stable.

First, for a value �S imposing an integer number of pairs
in S, say �S=2, the charging number nN increases monoto-
nously with �N. Next, consider a case where nS fluctuates, for
instance, �S=1. For small r, as shown in Fig. 2�a�, nN is
again a monotonous function of �N: the sequence of charge
states �nN ,nS� as �N increases reads �0,0�, �0,2�, �1,0�, �1,2�,
�2,0�, �2,2�,… �notice the oscillation of nS�. The charging
staircase for island N is plotted in the inset of Fig. 2�a�.

Now, assume that r is increased. The slope of the degen-
eracy lines separating two horizontally neighboring charge
states, �nN ,nS� and �nN+1,nS�, will become less and less
negative. At a certain point, r= 1

2�b
, the transitions between

charge states �nN ,nS� and �nN+1,nS+2� will be closed off
�Fig. 2�b�� and the charging staircase in the inset of Fig. 2�a�
is no longer possible.

If r is increased even further, new transitions between
charge states �nN ,nS+2� and �nN+2,nS� open up. These new
transitions for large r values result in a very different behav-
ior of the system. In Fig. 2�c�, for �S=1, nN increases with �N
but in a nonmonotonous way, the charge state sequence be-
ing �1,0�, �0,2�, �2,0�, �1,2�, �3,0�, �2,2�, etc. The correspond-
ing charging staircase is plotted in the inset.

At r= 1
�b

, many charge states with the same total number
of charges are degenerate �Fig. 2�d��. From the previous dis-
cussion, it is clear that it is not possible to increase r even
further in an attempt to create more complex charging stair-
cases.

In the range 1
2�b

�r�
1
�b

, one sees that the transition from
�nN ,2� to �nN+2,0� at �N=nN+1 “skips” the charge state
nN+1 in the grain. This signals a negative effective charging
energy in N which overcomes the Coulomb repulsion. After
increasing by two units, nN decreases by one unit, yielding a
negative differential capacitance �NDCA� Cdif f =CgN

dnN

d�N
at

half-integer values of �N. Strikingly, the total number of
steps, positive or negative, is doubled with respect to the
usual case. Both charge skipping and NDCA occur above the
dotted line indicated in the inset in Fig. 4 displaying a �b ,r�
diagram. From the above charging energy, an effective at-
tractive potential U�0 can be estimated for �S=1 as
U=EC�0,2�+EC�2,0�−2EC�1,2�=2ECN�1−2r�b�. The nec-
essary condition for the occurrence of a negative charging
energy is thus 2r�b
1. It can be rewritten in a more trans-
parent way as C0
CJ+CgS.

A simple physical understanding of the charge-skipping
behavior can be gained from realizing that in the large cou-
pling limit, the two islands tend to behave as a one-island
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system. The consequence is that it does not matter energy
wise if there are two charges in the form of a Cooper pair
sitting on the S island or if there are two electrons in the N
island—the two cases are electrostatically equivalent. This
shows that pairing in S is essential to achieve charge skip-
ping in N. The latter indeed results from strong capacitive
coupling between the charge in N and the charge being even
in S, and it could not be obtained in a pair of normal metallic
islands.

III. CHARGE DYNAMICS OF THE DOUBLE-ISLAND
SYSTEM

To further analyze this possibility in an open NS system,
let us consider the full Hamiltonian,

H = ÊC + �
k�

�kckR,�
† ckR,� + �

q�

�qcqN,�
† cqN,�

+ ��
kq�

Tk,qckR,�
† cqN,� −

EJ

2
�nS + 2	
nS� + H.c.� , �2�

where k �q� denotes electron states in the normal reservoir R
�island N� and Tk,q is a tunnel matrix element. The Coulomb

operator ÊC is obtained from Eq. �1� by replacing the occu-
pation numbers nN, nS by operators n̂N, n̂S, and EJ is the
Josephson energy. The total charge in N is expressed as n̂N
=�q�cqN,�

† cqN,�. Assuming for simplicity the constant densi-
ties of states 
R, 
N in R and N, and �Tkq�=T, the single-
electron transition rate from R to N is given by ��+1�

=
�EC

�+1�

e2RN
�exp��EC

�+1� /kBT�−1�−1 within the golden rule approxi-

mation, where RN is the tunnel resistance, expressed as 1
RN

= 2e2

h �2��2�T�2
R
N�R�N. The index �+1� indicates that one
electron is added to the dot N, and �R/N is the volume of the
lead and island.

A. Small Josephson energy

Considering first the case of small EJ�ECS, we perform a
T-matrix calculation of the transition rates from �0,2� to �2,0�
�close to �N=1� and from �2,0� to �1,2� �close to �N=1.5�.
For the first transition, we take into account three possible
configuration paths involving higher-energy states:
�0,2�→ �1,2�→ �2,2�→ �2,0�, �0,2�→ �1,2�→ �1,0�
→ �2,0�, and �0,2�→ �0,0�→ �1,0�→ �2,0�. For the second
transition, only one excited state is involved: �2,0�→ �1,0�
→ �1,2� and �2,0�→ �2,2�→ �1,2�. Denoting by HT the tun-
neling term from R �fourth term in Hamiltonian �2��, the
Josephson term by HJ, and setting H0=H−HT−HJ, the
second- and third-order T-matrix operators are

T�2� = �HT + HJ�
1

E0 − H0
�HT + HJ� �3�

and

T�3� = �HT + HJ�
1

E0 − H0
�HT + HJ�

1

E0 − H0
�HT + HJ� . �4�

Then, the tunneling rate from the initial to the final state is
calculated as ��i→ f�= 2�

� �
f �T�i	�2��Ei−Ef�. The shape of

FIG. 2. Charge stability �or honeycomb� diagram for b=1, �a�
r=0.2, �b� r=0.5, �c� r=0.8, and �d� r=1. The insets show the
charging curves for N. In case �c�, the charging staircase �inset�
exhibits charge-skipping effects.
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each step is obtained at finite temperature by solving the
master equation governing the dynamics of the probabilities
p�0,2�, p�2,0� for the positive step and p�2,0�, p�1,2� for
the negative one. The master equation reads as usual ṗ�a�
=�b→ap�b�−�a→bp�a�, with p�b�=1− p�a� for the states a ,b
involved in the transition. Here, the probabilities of other
states are neglected, which is justified close to �N=1 or �N
=1.5 and if the steps are sufficiently narrow. The resulting
steps are shown in Fig. 3.

As a result, a positive step +2�e� �where the charge num-
ber nN=1 is skipped� and a consecutive negative step −�e� are
stabilized. Notice that contrary to the usual staircase, where
all transitions between n and n�1 are real and treated by the
same master equation,20 here the rates are of higher order
and the virtual states involved in one transition �positive
step� become real states �with first-order rates� for the next
�negative� one. A full treatment of all processes is beyond the
scope of this paper.

B. Large Josephson energy

Let us now turn to the case of a large Josephson energy.
Then, one can resort to an adiabatic approximation.17 It
amounts to assume a slow variation of the charge number in
N which modulates the effective gate voltage acting on the
superconducting island. It requires that all the energy scales
characterizing such a dynamics, including the single- and
two-electron transition rates connecting different charge
states in N, be much smaller than EJ. Then, the Cooper-pair
box operates phase coherently, which amounts to neglect
transitions between the Bloch bands.15 Setting the phase dif-
ference to � across the JJ, and neglecting the normal electron
tunneling term, yields the resulting adiabatic Hamiltonian,

Had = ECN�nN − �N�2

+ ECS��n̂S − �S�2 + 2
r

�b
�nN − �N��n̂S − �S�� − EJ cos � .

�5�

Apart from the first term, this Hamiltonian represents a
Cooper-pair box submitted to an effective gate depending on

the charge nN. In the tight-binding limit
EJ

ECS
�1, assuming

that the junction dynamics is confined to the lowest Bloch
band, one obtains the sum of the N dot charging energy and
the adiabatic Bloch band energy,

Ead = ECN�1 − r2��nN − �N�2

− �0 cos����S −
r

�b
�nN − �N�
� , �6�

where the bandwidth is given by15

�0 = 16� 2

�
ECS� EJ

2ECS

3/4

e−�8EJ/ECS. �7�

Here, Ead appears as an effective charging energy for the N
island, depending on the additional parameter �S. The second
term in Ead represents a nonlinear screening potential acting
on the charge in N. The gate offset �S controls the phase of
the cosine term, and an appropriate choice �for instance,
�S�1� allows us to achieve a negative curvature of Ead. The
required condition reads �2

2
r2

b�1−r2��0
1, yielding the lines in

Fig. 4. Clearly, a large EJ sets a stronger constraint on the
coupling capacitance C0 and requires values of r closer to
one than for smaller EJ values. The shape of the charge skip-
ping and negative steps is then calculated like in Sec. II,
using a master equation based on transition rates between
charge states nN=0,2 or nN=2,1, respectively. The adiabatic
transition rates are given by �ad=

�Ead

e2RN
�exp��Ead /kBT�−1�−1.

The corresponding steps are shown in Fig. 3 �dotted line� and
are less pronounced than in the small EJ case.

IV. DISCUSSION

Searching for the optimum regime must account for the
fact that for too large r values, the system behaves like one
single island and its energy no longer depends on the loca-
tion of the charge. Operating in the Coulomb blockade re-
gime requires temperatures much smaller than the energy
difference between two charge states. As a result, for, say

νN

n
N

32.521.510.5

3

2

1

0

νN

n
N

32.521.510.5

3

2

1

0

FIG. 3. Charging staircase: �i� �full line� perturbative solution in
EJ for r=0.8, b=1, EJ /ECS=0.5, kBT /ECS=3�10−2, and
RN /RK=10; �ii� �dotted line� adiabatic solution for EJ /ECS=2, the
other parameters being unchanged.

FIG. 4. Phase diagram in the b ,r plane. The unphysical gray
region is excluded. Charge skipping and NDCA occur above the
dotted line from bottom to top: EJ /ECS=0 �analytic�, 1, 2, and 4
�adiabatic calculation�. All other parameters are the same as in Fig.
3.
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b=1, an optimal r is close to 0.75 for small Josephson ener-
gies. In this case, the requirement for Coulomb blockade is
kBT�

ECN

4 . In the step calculations, the value r=0.8 was used
to accommodate for both the small and large Josephson en-
ergy cases. A temperature T�30 mK and a typical charging
energy ECN�0.1 meV were used. For the symmetric case
�b=1�, this charging energy gives CN=CJ�2 fF. Further-
more, if we assume, e.g., CgN=CgS=0.02 fF, then the offset
charges �S=1 and �N=0.75–2.75 correspond to VgS=4 mV
and VgN=6–22 mV, respectively. The value of r chosen for
the calculations corresponds to C0=4CN=8 fF. Recently,
coupling values as high as r=0.35 were achieved in lateral
normal dots.21 Notice that such a value is sufficient for our
purpose if b is larger than 5.

An additional requirement for Coulomb blockade is that
the tunnel resistance RN be larger than the resistance quan-
tum RK= h

e2 �25.8 k�. The value
RN

RK
=10 was used, yielding

a bare single-electron tunneling rate of ��109 s−1, obtained
in the absence of S. In the presence of the S island, the
effective tunneling rates are 107 s−1 �nN decreasing from 2 to
1� and 5�103 s−1 �nN increasing from 0 to 2�, respectively.
With the above parameters, the maximum attraction �U� is of
the order of 40 �eV. This allows operation of the device at
cryogenic dilution temperatures. Higher temperatures could
be reached by decreasing the size of the device elements,
thus increasing the Coulomb energy scales. Carbon nano-
tubes or even molecular units could be envisioned.

One might wonder whether such a negative charging en-
ergy may render the dot superconducting. It is not the case
because it concerns the energy required to add one or two
electrons on the dot rather than a true attractive potential felt
by all electrons near the Fermi level. The effective “negative-
U” potential manifests itself only when the dot is weakly
coupled to a reservoir such that its charge can fluctuate. The
situation is indeed very similar to a single “−U” center
weakly hybridized with an otherwise normal bulk metal. In
the present case, pair fluctuations with the reservoir are as-
sumed to be incoherent. On the contrary, a very small tun-
neling term TNS between N and S would open the possibility
of establishing a true phase coherence between states nN,
nN+2. Then, the proximity effect could be studied in a quite
unusual regime, where TNS� �U�.

Let us briefly discuss the issue of phase coherence in the
Cooper-pair box. As shown above, charge skipping only re-
quires that pair tunneling occurs between the superconduct-
ing reservoir and the S island in order to screen the repulsive
interaction in the normal grain. No phase coherence is
needed, as shown by the first calculation performed in the
small EJ case. Moreover, even in the large EJ case, charge
fluctuations in N should strongly react back upon S and re-
duce the phase coherence. A full treatment goes beyond the
adiabatic approximation.22 One can anticipate that correc-
tions to the adiabatic behavior cause substantial fluctuations
in the phase �, renormalizing EJ to a smaller value, thus
making the small-EJ case generic.

We now propose a scheme for detecting an induced attrac-
tion in a normal metallic grain. The goal is to detect the
nonmonotonous charging of the N grain. SETs or point
contacts23 provide very sensitive detection of the local
change in the electrostatic potential �rather than the charge�.
In double-dot setups with weak mutual coupling, the poten-
tial variations in each dot can be measured by a different
neighboring point contact.24 In the present case, placing a
point contact close to N does not measure �nN, but instead
�VN= �C−1�NN�e�nN�+ �C−1�NS�e�nS�=

2ECN

e ��nN+r�b�nS�,
where �C−1�NN=

C�S

C�NC�S−C0
2 and �C−1�NS=

C0

C�NC�S−C0
2 are coeffi-

cients of the inverse capacitance matrix. If C0
CJ+CgS,
doubling of the number of steps can be detected this way, but
not the nonmonotonous charging curve. To access the latter,
it is suitable to measure �VS=

2ECN

e �r�b�nN+b�nS� as well,
with a second point contact close to S �Fig. 1�, and recon-
struct �nN=

C�N

e
��VN− r

�b
�VS�. The parameters C�N, r, and b

can easily be measured from the stability diagram obtained
in the normal �nonsuperconducting� state in the presence of a
very weak tunneling between N and S.19 Notice that the tun-
neling rates calculated above are much reduced compared to
the bare single-electron rate �. Therefore, the use of point
contacts permits not just a time averaged24 but even a time
resolved and directional25 detection of the charge variations
in N and S. On the other hand, cross-correlation shot noise
measurements, as in Ref. 26, would require higher currents.
In practice, a possible setup inspired by Ref. 24 is proposed
in Fig. 1. It involves a superconducting strip with a Cooper-
pair box, coupled laterally to an InGaAs /AlGaAs 2DEG,
suitably tuning the barrier present at the interface between
the superconductor and the 2DEG.

Going beyond the single dot case, the same mechanism
could establish attractive correlations between electrons in
spatially separated normal dots �similar to the all-
superconducting case of Ref. 17�. This could be useful for
implementing quantum information protocols involving two-
qubit gates, when the qubits are carried by the charge �spin�
of the last added electron. Indeed, two electrons coming from
the same or from separate quantum wires could be simulta-
neously captured in a pair of dots and undergo a quantum
gate, acting, for instance, on their spin degrees of freedom.

In conclusion, we have proposed a mechanism inducing a
controllable negative charging energy, thus attractive corre-
lations, in one or several metallic dots. Besides its intrinsic
interest, such an effect would be useful in view of more
complex nanoelectronic devices.
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